Fast Digital Integrator
Upgrade

IMMW17, J. Tinembart, Sept. 2011
FDI : Brief history

- Designed for LHC superconducting magnet measurement
- Collaborative development by University of Sannio (IT) and various groups at CERN
- License taken by Metrolab to manufacture and sell CERN’s FDI in order to provide a successor to “vintage” PDI5025
Why METROLAB chose it

- Performance improvement over PDI5025
- Clever design
- Man-years spent by CERN and University of Sannio
- Many articles and studies, including PHD
 - Full analytical analysis of the noise. (Arpaia et al., IMTC 07)
 - Metrological characterization of a FDI for magnetic measurements at CERN. (Arpaia et al., IMEKO 06)
 - … and more than a dozen more
Principle of integration

- Regularly spaced samples \((F_s = 500 \text{ kSPS typical, 18-Bit}) \)
- Trigger signal sampled with a time resolution of 50 ns
- Surface is calculated using the amplitude value and trigger position (Trapezoidal Rule)
Current limitations

- One trigger input source only
- Visible time lag when boards are daisy-chained
- Poll-only data transfer mechanism
- \(2^n\) trigger counts, resulting in \(2^n-1\) partial integrals
- Trigger time resolution limited to 50 ns
- Trigger rate > 100 kPI/s cannot be achieved simply
- Cannot work as a simple acquisition board
- Not field-upgradable
Current problems (I)

- Defaults that can be corrected:
 - Multiple quartz sources on the board => generates beatings
 - Protection diode at the input => non linearity

(Time- and frequency-domain noise measurement)

(Two-tone signal without protection diode)
Current problems (II)

- Defaults that cannot be corrected:
 - Input is not floating
 - Not fully EMC compliant

- Restrictions:
 - Input impedance is non negligible
 - Coil impedance not taken into account when performing internal normalization
 - Maximum gain is 100x, but this is justified
 - 1-1.2 MB/s transfer rate
 (onboard memory could limit this problem)
Customer feedback

- **Reported bugs:**
 - Strange saw-tooth pattern (not fully explained)
 - Integration value changes with sampling rate
 - Fast trigger generation leads to calculation error
 - Buffer overflow error reporting is non-functional

- The board design is a **good basis** but needs improvement
Revised FDI “wish-list” (I)

- Quadrature signal decoder:
 - Linear or rotating encoder, with or without index
 - Read-out of current pulse count
 - Missing pulse detection

- Trigger Factory:
 - External trigger
 - Timed trigger
 - Quadrature signal decoder trigger
 - Software trigger
 - Simultaneous multichannel trigger
Revised FDI “wish-list” (II)

- Sampler mode (Voltmeter)
- Higher trigger time resolution
- Single reference clock for all channels
- Interrupt for data transfer and error handling
- Field upgradable
- Onboard memory
- Higher integration rate (670 kPI/s)
Aim for simplicity

- Minimal changes:
 - SDRAM chip
 - Drivers for encoder
 - Fuse! (rearmable !!)
 - DSP not used for integration
 - **Reworked VHDL code for FPGA**

- Keeping in mind that all sold units will have to be retrofitted !!!
Block diagram: Integrator

- Sampling Rate Generator
- Offset
- 18-Bit Sample
- External Trigger
- Quadrature Decoder
 - A
 - B
 - Index
- Trigger Factory
- Time
- Iterative 64-Bit Float multiplier
- Gain
- 32-Bit or 64-Bit Float Result
- Time Stamp

Various blocks configuration not shown

Internal Time Trigger
Block diagram : Sampler

Various blocks configuration not shown

18-Bit Sample

Offset

~

#

18-Bit Sample

Gain

Iterative 64-Bit Float multiplier

32-Bit or 64-Bit Float Result

Time

Time Stamp

Trigger Factory

External Trigger

A

B

Index

Quadrature Decoder

Internal Time Trigger

PXI Star
PXI Star Trigger and clocking

RULE: The PXI_STAR line lengths SHALL be matched in propagation delay to within 1 ns, and the delay from the star trigger slot to each peripheral module SHALL NOT exceed 5 ns.
Quadrature signal decoder

- Decode linear or rotary quadrature signals
 - A, B, Index and Error input
 - Single-ended or differential
 - Each input can be inverted by software
 - Internal 90° index is reconstructed
- Works with indexed or non-indexed units
- Keeps track of the current position
- Alarm fires when index position isn’t at zero count
Trigger Factory

- Based on configuration word consisting of a
 - Trigger Source
 - Pre-scale Value
 - Count Value

- 16-word configuration FIFO
 - A new word is read after Count Value is exhausted
 - Each exhausted word leaves room to a new word

- Acquisition is done when FIFO is exhausted
Example: acquisition for multipole analysis

Acquisition of 555 partial integrals starting 12° after index, using a 1024-line encoder:

- 2 configuration words are used:

<table>
<thead>
<tr>
<th>Trigger source</th>
<th>Prescale value</th>
<th>Count value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder position</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Encoder edge</td>
<td>4</td>
<td>555</td>
</tr>
</tbody>
</table>

- Acquisition start at absolute position, limited by the encoder:
 \[\frac{136}{4096} \times 360° = 11.95°\]
- Encoder position must be written in another register, part of quadrature decoder
Software driver / interface

- **Current software layers**
 - Customer Application
 - Metrolab’s UIF
 - LabVIEW API
 - NI-VISA

- **Future software layers**
 - Virtual COM
 - PDI emulation
 - Customer Application
 - LabVIEW API
 - C++
 - NI-VISA
 - Custom C++

- RT-OS, ...

NI-VISA
LabVIEW API
Customer Application
Metrolab’s UIF
Customer Application
C++
Custom C++
RT-OS, ...

18
Brief integrator comparison

<table>
<thead>
<tr>
<th></th>
<th>PDI5025</th>
<th>FDI2056</th>
<th>FDI2056 (revised)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trigger rate</td>
<td>1 kI/s</td>
<td>250 kPI/s</td>
<td>Up to 670 kPI/s</td>
</tr>
<tr>
<td>Time resolution</td>
<td>2 µs</td>
<td>50 ns</td>
<td>8.33 ns</td>
</tr>
<tr>
<td>Data transfer rate</td>
<td>1 KB/s</td>
<td>1 MB/s</td>
<td>1 MB/s</td>
</tr>
<tr>
<td>Internal data storage</td>
<td>5200 values</td>
<td>16 x 32-Bit words</td>
<td>At least 8 MB</td>
</tr>
<tr>
<td>Trigger Factory</td>
<td>Internal</td>
<td>External</td>
<td>Internal</td>
</tr>
<tr>
<td>Channel synchronization</td>
<td>Internal (2 channels)</td>
<td>External</td>
<td>Internal (Up to 12 channels)</td>
</tr>
</tbody>
</table>
Thanks for your attention!

QUESTIONS? (or tapas)